Phosphate Based Cathodes and Reduced Graphene Oxide Composite Anodes for Energy Storage Applications

Phosphate Based Cathodes and Reduced Graphene Oxide Composite Anodes for Energy Storage Applications
 
Author:
Abdulrahman Shahul Hameed
Published in: Springer
Release Year: 2016
ISBN: 978-981-10-2302-6
Pages: 156
Edition: First edition
File Size: 6 MB
File Type: pdf
Language: English



Description of Phosphate Based Cathodes and Reduced Graphene Oxide Composite Anodes for Energy Storage Applications


It is a great pleasure to introduce the Ph.D. thesis work of Dr. Abdulrahman Shahul Hameed which won the Springer Thesis Award 2016 for outstanding original work and accepted for publication within Springer Theses. Shahul ranked second in his B.Sc. (2004–2007) from Calicut University, India. Later, he was admitted to the Indian Institute of Technology—Delhi, one of the prestigious institutes in India through a highly competitive national-level Joint Admission Test to do M.Sc. (2008–2010) before joining the National University of Singapore for his Ph.D. degree. Shahul completed Ph.D. doctoral work under my supervision in the Department of Chemistry during the period August 2010–August 2014, defended his Ph.D. thesis, and received his Ph.D. degree in January 2015.
Shahul’s thesis work deals with developing novel cathode and anode materials for lithium-ion battery applications. This includes synthesizing novel nanomaterials, characterizing the as-synthesized materials and fabrication of the electrodes, and assembling the lithium-ion battery in the glove box. Shahul had carried out his research independently.

Content of Phosphate Based Cathodes and Reduced Graphene Oxide Composite Anodes for Energy Storage Applications



1 Introduction to Li-ion Batteries  1
1.1 Introduction  1
1.2 Definition and Classification of Batteries .. 2
1.2.1 Primary Batteries 3
1.2.2 Secondary Batteries. 3
1.2.3 Comparison of Secondary Batteries. 3
1.3 Principle of Operation of LIBs . 4
1.4 Applications of LIBs: State of the Art and Future . 6
1.5 Research Trend on LIB Materials.. 6
1.5.1 Cathode Materials .. 7
1.5.2 Anode Materials  16
1.5.3 Electrolyte Materials  22
1.6 Aims of the Present Study. 24
1.7 Thesis Outline . 25
References 25
2 Physicochemical and Electrochemical Characterization .. 31
2.1 Introduction  31
2.2 Synthesis of Electrode Materials 32
2.2.1 Hydrothermal Synthesis  32
2.2.2 Single Source Precursor Approach. 32
2.2.3 Sonochemical Reaction. 33
2.3 Structural Characterization. 33
2.3.1 Powder X-Ray Diffraction.. 33
2.3.2 In Situ X-Ray Diffraction .. 35
2.3.3 Rietveld Refinement  36
2.3.4 Single Crystal X-Ray Diffraction .. 36
2.3.5 Elemental Analysis (EA) 37
2.3.6 Thermogravimetric Analysis  37
2.4 Morphological Characterization  38
2.4.1 Scanning Electron Microscopy. 38
2.4.2 Transmission Electron Microscopy. 39
2.5 Coin Cell Fabrication .. 40
2.5.1 Electrode Fabrication 40
2.5.2 Coin Cell Assembly  41
2.6 Electrochemical Characterization .. 42
2.6.1 Galvanostatic Cycling .. 42
2.6.2 Cyclic Voltammetry  43
2.6.3 Electrochemical Impedance Spectroscopy (EIS)  44
References 45
3 Synthesis and Electrochemical Studies of a Novel MOPOF
Cathode Material, [Li2(VO)2(C2O4)(HPO4)2].. 47
3.1 Introduction  47
3.2 Experimental Section .. 49
3.2.1 Synthesis of [Li2(VO)2(HPO4)2(C2O4)]6H2O .. 49
3.2.2 Synthesis of [Li2(VO)2(HPO4)2(C2O4)]. 49
3.2.3 X-Ray Data Collection and Structure Determination  50
3.3 Results and Discussion. 50
3.3.1 Controlled Synthesis of [Li2(VO)2(HPO4)2(C2O4)]6H2O  50
3.3.2 TGA  51
3.3.3 In Situ PXRD .. 52
3.3.4 Ab Initio Structure Determination .. 53
3.3.5 Structure Description 54
3.3.6 Galvanostatic Cycling Studies.. 55
3.3.7 Cyclic Voltammetry  59
3.3.8 Electrochemical Impedance Spectroscopy (EIS)  61
3.3.9 Ex Situ XRD Studies .. 62
3.4 Conclusions  64
References 64
4 Room Temperature Synthesis of rGO/[K2(VO)2(C2O4)(HPO4)2]
for Greener and Cheaper Lithium-Ion Batteries. 67
4.1 Introduction  67
4.2 Experimental Section .. 68
4.2.1 Preparation of Graphene Oxide. 68
4.2.2 Synthesis of [K2(VO)2(HPO4)2(C2O4)]. 69
4.2.3 Synthesis of rGO/[K2(VO)2(HPO4)2(C2O4)]  69
4.2.4 Structural and Electrochemical Characterization  70
4.3 Results and Discussion. 70
4.3.1 Structural Analysis. 70
4.3.2 In Situ PXRD .. 71
4.3.3 TGA  73
4.3.4 Raman Spectroscopy  73
4.3.5 Morphology  74
4.3.6 Galvanostatic Cycling .. 75
4.4 Conclusions  79
References 79
5 Single Source Precursor Route to Carbon Coated Li3V2(PO4)3
for Cathode and Anode Applications in Lithium-Ion Batteries .. 81
5.1 Introduction  81
5.2 Experimental Section .. 83
5.2.1 Synthesis of [Li2(VO)2(HPO4)2(C2O4)]6H2O .. 83
5.2.2 Synthesis of Li3V2(PO4)3 .. 83
5.2.3 Structural and Electrochemical Characterization  83
5.3 Results and Discussion. 84
5.3.1 Structure Analysis.. 84
5.3.2 Morphology  85
5.3.3 Galvanostatic Cycling Studies.. 87
5.3.4 Cyclic Voltammetry  93
5.3.5 Electrochemical Impedance Spectroscopy .. 95
5.4 Conclusions  95
References 96
6 Synthesis and Electrochemical Studies of a Metastable,
Layered Phosphate aI-LiVOPO4 .. 99
6.1 Introduction  99
6.2 Experimental Section .. 101
6.2.1 Synthesis of LiVOPO42H2O .. 102
6.2.2 Synthesis of aI-LiVOPO4 .. 102
6.2.3 Structural and Electrochemical Characterization  102
6.3 Results and Discussion. 103
6.3.1 Structure Analysis.. 103
6.3.2 TGA and PXRD  104
6.3.3 Structural Transformation Mechanism.. 108
6.3.4 Galvanostatic Cycling .. 109
6.3.5 Cyclic Voltammetry  112
6.4 Conclusions  113
References 113
7 Single Source Precursor Route to rGO/Sb2S3 Nanocomposites
for Lithium Ion Battery Anodes 115
7.1 Introduction  115
7.2 Experimental Section .. 116
7.2.1 Synthesis of Sb(SCOPh)3 .. 117
7.2.2 Synthesis of Sb2S3. 117
7.2.3 Synthesis of rGO/Sb2S3  117
7.2.4 Structural and Electrochemical Characterization  118
7.3 Results and Discussion. 118
7.3.1 TGA and PXRD  118
7.3.2 Raman Spectroscopy  119
7.3.3 Morphology  120
7.3.4 Galvanostatic Cycling .. 120
7.3.5 Cyclic Voltammetry  126
7.4 Conclusions  128
References 128
8 Graphene Wrapped Fe3O4 Nanoparticles as Stable and High
Performance Anodes for Lithium Ion Batteries .. 131
8.1 Introduction  131
8.2 Experimental Section .. 132
8.2.1 Synthesis of Graphene Oxide .. 132
8.2.2 Synthesis of rGO/Fe3O4  133
8.2.3 Structural and Electrochemical Characterization  133
8.3 Results and Discussion. 133
8.3.1 Structural Analysis. 133
8.3.2 Raman Spectroscopy  135
8.3.3 Morphology  135
8.3.4 Galvanostatic Cycling .. 136
8.3.5 Cyclic Voltammetry  142
8.3.6 ElS Studies. 145
8.4 Conclusions  146
References 147

GET THIS BOOK
Similar Books

0 comments: