Author: |
Abdulrahman Shahul Hameed
|
Published in: | Springer |
Release Year: | 2016 |
ISBN: | 978-981-10-2302-6 |
Pages: | 156 |
Edition: | First edition |
File Size: | 6 MB |
File Type: | |
Language: | English |
Description of Phosphate Based Cathodes and Reduced Graphene Oxide Composite Anodes for Energy Storage Applications
It is a great pleasure to introduce the Ph.D. thesis work of Dr. Abdulrahman Shahul Hameed which won the Springer Thesis Award 2016 for outstanding original work and accepted for publication within Springer Theses. Shahul ranked second in his B.Sc. (2004–2007) from Calicut University, India. Later, he was admitted to the Indian Institute of Technology—Delhi, one of the prestigious institutes in India through a highly competitive national-level Joint Admission Test to do M.Sc. (2008–2010) before joining the National University of Singapore for his Ph.D. degree. Shahul completed Ph.D. doctoral work under my supervision in the Department of Chemistry during the period August 2010–August 2014, defended his Ph.D. thesis, and received his Ph.D. degree in January 2015.
Shahul’s thesis work deals with developing novel cathode and anode materials for lithium-ion battery applications. This includes synthesizing novel nanomaterials, characterizing the as-synthesized materials and fabrication of the electrodes, and assembling the lithium-ion battery in the glove box. Shahul had carried out his research independently.
Content of Phosphate Based Cathodes and Reduced Graphene Oxide Composite Anodes for Energy Storage Applications
1 Introduction to Li-ion Batteries 1
1.1 Introduction 1
1.2 Definition and Classification of Batteries .. 2
1.2.1 Primary Batteries 3
1.2.2 Secondary Batteries. 3
1.2.3 Comparison of Secondary Batteries. 3
1.3 Principle of Operation of LIBs . 4
1.4 Applications of LIBs: State of the Art and Future . 6
1.5 Research Trend on LIB Materials.. 6
1.5.1 Cathode Materials .. 7
1.5.2 Anode Materials 16
1.5.3 Electrolyte Materials 22
1.6 Aims of the Present Study. 24
1.7 Thesis Outline . 25
References 25
2 Physicochemical and Electrochemical Characterization .. 31
2.1 Introduction 31
2.2 Synthesis of Electrode Materials 32
2.2.1 Hydrothermal Synthesis 32
2.2.2 Single Source Precursor Approach. 32
2.2.3 Sonochemical Reaction. 33
2.3 Structural Characterization. 33
2.3.1 Powder X-Ray Diffraction.. 33
2.3.2 In Situ X-Ray Diffraction .. 35
2.3.3 Rietveld Refinement 36
2.3.4 Single Crystal X-Ray Diffraction .. 36
2.3.5 Elemental Analysis (EA) 37
2.3.6 Thermogravimetric Analysis 37
2.4 Morphological Characterization 38
2.4.1 Scanning Electron Microscopy. 38
2.4.2 Transmission Electron Microscopy. 39
2.5 Coin Cell Fabrication .. 40
2.5.1 Electrode Fabrication 40
2.5.2 Coin Cell Assembly 41
2.6 Electrochemical Characterization .. 42
2.6.1 Galvanostatic Cycling .. 42
2.6.2 Cyclic Voltammetry 43
2.6.3 Electrochemical Impedance Spectroscopy (EIS) 44
References 45
3 Synthesis and Electrochemical Studies of a Novel MOPOF
Cathode Material, [Li2(VO)2(C2O4)(HPO4)2].. 47
3.1 Introduction 47
3.2 Experimental Section .. 49
3.2.1 Synthesis of [Li2(VO)2(HPO4)2(C2O4)]6H2O .. 49
3.2.2 Synthesis of [Li2(VO)2(HPO4)2(C2O4)]. 49
3.2.3 X-Ray Data Collection and Structure Determination 50
3.3 Results and Discussion. 50
3.3.1 Controlled Synthesis of [Li2(VO)2(HPO4)2(C2O4)]6H2O 50
3.3.2 TGA 51
3.3.3 In Situ PXRD .. 52
3.3.4 Ab Initio Structure Determination .. 53
3.3.5 Structure Description 54
3.3.6 Galvanostatic Cycling Studies.. 55
3.3.7 Cyclic Voltammetry 59
3.3.8 Electrochemical Impedance Spectroscopy (EIS) 61
3.3.9 Ex Situ XRD Studies .. 62
3.4 Conclusions 64
References 64
4 Room Temperature Synthesis of rGO/[K2(VO)2(C2O4)(HPO4)2]
for Greener and Cheaper Lithium-Ion Batteries. 67
4.1 Introduction 67
4.2 Experimental Section .. 68
4.2.1 Preparation of Graphene Oxide. 68
4.2.2 Synthesis of [K2(VO)2(HPO4)2(C2O4)]. 69
4.2.3 Synthesis of rGO/[K2(VO)2(HPO4)2(C2O4)] 69
4.2.4 Structural and Electrochemical Characterization 70
4.3 Results and Discussion. 70
4.3.1 Structural Analysis. 70
4.3.2 In Situ PXRD .. 71
4.3.3 TGA 73
4.3.4 Raman Spectroscopy 73
4.3.5 Morphology 74
4.3.6 Galvanostatic Cycling .. 75
4.4 Conclusions 79
References 79
5 Single Source Precursor Route to Carbon Coated Li3V2(PO4)3
for Cathode and Anode Applications in Lithium-Ion Batteries .. 81
5.1 Introduction 81
5.2 Experimental Section .. 83
5.2.1 Synthesis of [Li2(VO)2(HPO4)2(C2O4)]6H2O .. 83
5.2.2 Synthesis of Li3V2(PO4)3 .. 83
5.2.3 Structural and Electrochemical Characterization 83
5.3 Results and Discussion. 84
5.3.1 Structure Analysis.. 84
5.3.2 Morphology 85
5.3.3 Galvanostatic Cycling Studies.. 87
5.3.4 Cyclic Voltammetry 93
5.3.5 Electrochemical Impedance Spectroscopy .. 95
5.4 Conclusions 95
References 96
6 Synthesis and Electrochemical Studies of a Metastable,
Layered Phosphate aI-LiVOPO4 .. 99
6.1 Introduction 99
6.2 Experimental Section .. 101
6.2.1 Synthesis of LiVOPO42H2O .. 102
6.2.2 Synthesis of aI-LiVOPO4 .. 102
6.2.3 Structural and Electrochemical Characterization 102
6.3 Results and Discussion. 103
6.3.1 Structure Analysis.. 103
6.3.2 TGA and PXRD 104
6.3.3 Structural Transformation Mechanism.. 108
6.3.4 Galvanostatic Cycling .. 109
6.3.5 Cyclic Voltammetry 112
6.4 Conclusions 113
References 113
7 Single Source Precursor Route to rGO/Sb2S3 Nanocomposites
for Lithium Ion Battery Anodes 115
7.1 Introduction 115
7.2 Experimental Section .. 116
7.2.1 Synthesis of Sb(SCOPh)3 .. 117
7.2.2 Synthesis of Sb2S3. 117
7.2.3 Synthesis of rGO/Sb2S3 117
7.2.4 Structural and Electrochemical Characterization 118
7.3 Results and Discussion. 118
7.3.1 TGA and PXRD 118
7.3.2 Raman Spectroscopy 119
7.3.3 Morphology 120
7.3.4 Galvanostatic Cycling .. 120
7.3.5 Cyclic Voltammetry 126
7.4 Conclusions 128
References 128
8 Graphene Wrapped Fe3O4 Nanoparticles as Stable and High
Performance Anodes for Lithium Ion Batteries .. 131
8.1 Introduction 131
8.2 Experimental Section .. 132
8.2.1 Synthesis of Graphene Oxide .. 132
8.2.2 Synthesis of rGO/Fe3O4 133
8.2.3 Structural and Electrochemical Characterization 133
8.3 Results and Discussion. 133
8.3.1 Structural Analysis. 133
8.3.2 Raman Spectroscopy 135
8.3.3 Morphology 135
8.3.4 Galvanostatic Cycling .. 136
8.3.5 Cyclic Voltammetry 142
8.3.6 ElS Studies. 145
8.4 Conclusions 146
References 147
1.1 Introduction 1
1.2 Definition and Classification of Batteries .. 2
1.2.1 Primary Batteries 3
1.2.2 Secondary Batteries. 3
1.2.3 Comparison of Secondary Batteries. 3
1.3 Principle of Operation of LIBs . 4
1.4 Applications of LIBs: State of the Art and Future . 6
1.5 Research Trend on LIB Materials.. 6
1.5.1 Cathode Materials .. 7
1.5.2 Anode Materials 16
1.5.3 Electrolyte Materials 22
1.6 Aims of the Present Study. 24
1.7 Thesis Outline . 25
References 25
2 Physicochemical and Electrochemical Characterization .. 31
2.1 Introduction 31
2.2 Synthesis of Electrode Materials 32
2.2.1 Hydrothermal Synthesis 32
2.2.2 Single Source Precursor Approach. 32
2.2.3 Sonochemical Reaction. 33
2.3 Structural Characterization. 33
2.3.1 Powder X-Ray Diffraction.. 33
2.3.2 In Situ X-Ray Diffraction .. 35
2.3.3 Rietveld Refinement 36
2.3.4 Single Crystal X-Ray Diffraction .. 36
2.3.5 Elemental Analysis (EA) 37
2.3.6 Thermogravimetric Analysis 37
2.4 Morphological Characterization 38
2.4.1 Scanning Electron Microscopy. 38
2.4.2 Transmission Electron Microscopy. 39
2.5 Coin Cell Fabrication .. 40
2.5.1 Electrode Fabrication 40
2.5.2 Coin Cell Assembly 41
2.6 Electrochemical Characterization .. 42
2.6.1 Galvanostatic Cycling .. 42
2.6.2 Cyclic Voltammetry 43
2.6.3 Electrochemical Impedance Spectroscopy (EIS) 44
References 45
3 Synthesis and Electrochemical Studies of a Novel MOPOF
Cathode Material, [Li2(VO)2(C2O4)(HPO4)2].. 47
3.1 Introduction 47
3.2 Experimental Section .. 49
3.2.1 Synthesis of [Li2(VO)2(HPO4)2(C2O4)]6H2O .. 49
3.2.2 Synthesis of [Li2(VO)2(HPO4)2(C2O4)]. 49
3.2.3 X-Ray Data Collection and Structure Determination 50
3.3 Results and Discussion. 50
3.3.1 Controlled Synthesis of [Li2(VO)2(HPO4)2(C2O4)]6H2O 50
3.3.2 TGA 51
3.3.3 In Situ PXRD .. 52
3.3.4 Ab Initio Structure Determination .. 53
3.3.5 Structure Description 54
3.3.6 Galvanostatic Cycling Studies.. 55
3.3.7 Cyclic Voltammetry 59
3.3.8 Electrochemical Impedance Spectroscopy (EIS) 61
3.3.9 Ex Situ XRD Studies .. 62
3.4 Conclusions 64
References 64
4 Room Temperature Synthesis of rGO/[K2(VO)2(C2O4)(HPO4)2]
for Greener and Cheaper Lithium-Ion Batteries. 67
4.1 Introduction 67
4.2 Experimental Section .. 68
4.2.1 Preparation of Graphene Oxide. 68
4.2.2 Synthesis of [K2(VO)2(HPO4)2(C2O4)]. 69
4.2.3 Synthesis of rGO/[K2(VO)2(HPO4)2(C2O4)] 69
4.2.4 Structural and Electrochemical Characterization 70
4.3 Results and Discussion. 70
4.3.1 Structural Analysis. 70
4.3.2 In Situ PXRD .. 71
4.3.3 TGA 73
4.3.4 Raman Spectroscopy 73
4.3.5 Morphology 74
4.3.6 Galvanostatic Cycling .. 75
4.4 Conclusions 79
References 79
5 Single Source Precursor Route to Carbon Coated Li3V2(PO4)3
for Cathode and Anode Applications in Lithium-Ion Batteries .. 81
5.1 Introduction 81
5.2 Experimental Section .. 83
5.2.1 Synthesis of [Li2(VO)2(HPO4)2(C2O4)]6H2O .. 83
5.2.2 Synthesis of Li3V2(PO4)3 .. 83
5.2.3 Structural and Electrochemical Characterization 83
5.3 Results and Discussion. 84
5.3.1 Structure Analysis.. 84
5.3.2 Morphology 85
5.3.3 Galvanostatic Cycling Studies.. 87
5.3.4 Cyclic Voltammetry 93
5.3.5 Electrochemical Impedance Spectroscopy .. 95
5.4 Conclusions 95
References 96
6 Synthesis and Electrochemical Studies of a Metastable,
Layered Phosphate aI-LiVOPO4 .. 99
6.1 Introduction 99
6.2 Experimental Section .. 101
6.2.1 Synthesis of LiVOPO42H2O .. 102
6.2.2 Synthesis of aI-LiVOPO4 .. 102
6.2.3 Structural and Electrochemical Characterization 102
6.3 Results and Discussion. 103
6.3.1 Structure Analysis.. 103
6.3.2 TGA and PXRD 104
6.3.3 Structural Transformation Mechanism.. 108
6.3.4 Galvanostatic Cycling .. 109
6.3.5 Cyclic Voltammetry 112
6.4 Conclusions 113
References 113
7 Single Source Precursor Route to rGO/Sb2S3 Nanocomposites
for Lithium Ion Battery Anodes 115
7.1 Introduction 115
7.2 Experimental Section .. 116
7.2.1 Synthesis of Sb(SCOPh)3 .. 117
7.2.2 Synthesis of Sb2S3. 117
7.2.3 Synthesis of rGO/Sb2S3 117
7.2.4 Structural and Electrochemical Characterization 118
7.3 Results and Discussion. 118
7.3.1 TGA and PXRD 118
7.3.2 Raman Spectroscopy 119
7.3.3 Morphology 120
7.3.4 Galvanostatic Cycling .. 120
7.3.5 Cyclic Voltammetry 126
7.4 Conclusions 128
References 128
8 Graphene Wrapped Fe3O4 Nanoparticles as Stable and High
Performance Anodes for Lithium Ion Batteries .. 131
8.1 Introduction 131
8.2 Experimental Section .. 132
8.2.1 Synthesis of Graphene Oxide .. 132
8.2.2 Synthesis of rGO/Fe3O4 133
8.2.3 Structural and Electrochemical Characterization 133
8.3 Results and Discussion. 133
8.3.1 Structural Analysis. 133
8.3.2 Raman Spectroscopy 135
8.3.3 Morphology 135
8.3.4 Galvanostatic Cycling .. 136
8.3.5 Cyclic Voltammetry 142
8.3.6 ElS Studies. 145
8.4 Conclusions 146
References 147
0 comments: