Genetic Modification of Plants

Genetic Modification of Plants
 
Author:
Frank Kempken & Christian Jung
Publisher:
Springer
ISBN No: 978-3-642-02391-0
Release at: 2010
Pages: 683
Edition:
Volume 64, Biotechnology in Agriculture and Forestry
File Size: 5 MB
File Type: pdf
Language: English



Description of Genetic Modification of Plants


Today modern agriculture is facing new challenges. Total yields have to be increased due to the continuing population growth of mankind and due to changing food consumption. However, the global climate creates new problems but also new opportunities for agriculture. 

For more than a decade the yearly yield increases of major food staples have been on the decline, which is due to optimized production systems like the application of mineral fertilizer and crop protection measures. But also the yield increases due to genetic improvement of crops have been stagnating. Obviously, we are approaching yield barriers for a number of crops, which creates a need for innovation in breeding systems.

Content of Genetic Modification of Plants



Part A Generation and Analysis of Transgenic Plants


1 Plant Nuclear Transformation  3
John J. Finer

1.1 Introduction to Plant Transformation. 3

1.1.1 DNA Introduction Basics. 3

1.2 Transient Expression  4

1.2.1 Optimization of Transient Expression  5

1.2.2 Transient Expression to Study Gene Expression and Stability  5

1.3 Agrobacterium Background . 6

1.3.1 A String of Improvements for Agrobacterium . 7

1.3.2 Agrobacterium– Plant Interactions . 8

1.3.3 Reducing Agents . 8

1.3.4 Agroinfiltration . 9

1.3.5 Arabidopsis Floral Dip . 9

1.4 Particle Bombardment  . 10

1.4.1 Gene Guns    11

1.4.2 Optimization of DNA Delivery  11

1.4.3 Control of DNA Integration Patterns12

1.5 Other Direct DNA UptakeApproaches  12

1.5.1 Protoplasts    13

1.5.2 Whole Tissue Electroporation  . 13

1.5.3 Silicon Carbide Whiskers    14

1.5.4 Nanofiber Arrays  14

1.5.5 Pollen Tube Pathway. 15

1.6 Evidence for Transformation16

1.6.1 DNA Presence   16

1.6.2 Gene Expression  17

1.7 Conclusions 18

References   18

2 Plastid Transformation    23
Heribert Warzecha and Anna Hennig

2.1 Introduction 23

2.2 Delivery of Transforming DNA to the Chloroplast  . 24

2.3 Vector Design27

2.3.1 Flanking Regions  27

2.3.2 Promoters and UTRs. 29

2.4 Transgene Stacking and Control of Gene Expression . 30

2.5 Selection  31

2.5.1 Antibiotic Resistance Markers  31

2.5.2 Other Selection Markers    . 32

2.6 Marker Gene Excision  . 32

2.7 Analysis  . 33

2.8 Conclusions 34

References   34

3 Concepts of Marker Genes for Plants   . 39
Josef Kraus

3.1 Introduction 39

3.2 Criteria for Choosing the Marker Gene System   . 40

3.3 Availability of Selectable Marker Gene Systems and Alternatives    . 42

3.3.1 Positive Selection Marker    42

3.3.2 Alternative Systems 47

3.3.3 Screenable Marker Genes    51

3.3.4 Negative Selection Marker   . 52

3.3.5 Marker-Free Transformation Without Usage of Any Marker Gene   . 52

3.4 Conclusions and Perspective53

References   54

4 Precise Breeding Through All-Native DNA Transformation61
Caius M. Rommens

4.1 Introduction 61

4.2 Examples of the Intragenic Modification in Potato  . 62

4.3 Requirements for the All-Native DNA Transformation of Potato  . 65

4.4 Intragenic Tomato (S. esculentum): Concentrating the Quality Potential of Tomato into its Fruit   . 67

4.5 Exploring the Diversity of Solanaceous Crops    68

4.6 Intragenic Modification of Alfalfa: Optimization of a Forage Feed    . 69

4.7 Exploiting Native Genetic Elements for Canola Oilseed Improvements. 70

4.8 Drought-Tolerant Perennial Ryegrass  71

4.9 Bruise-Tolerant Apple  . 72

4.10 Native Markers for Intragenic Transformation   . 72

4.11 Intragenic Crops Are at Least as Safe as Those Developed Through Traditional Methods73

4.12 Conclusions 74

References   74

5 Gene Silencing in Plants: Transgenes as Targets and Effectors    79
Andreas E. Mu ̈ller

5.1 Introduction 79

5.2 Mechanisms of Gene Silencing    80

5.2.1 The Role of Small RNAs    81

5.2.2 Epigenetic Silencing of Transcription     83

5.3 Silencing of Transgene Expression   85

5.3.1 Cis- and Trans-Silencing Of Multi-Copy Transgenes    85

5.3.2 Silencing of Single-Copy Transgenes     88

5.3.3 Reducing the Risk of Transgene Silencing   89

5.4 Applications of RNA Interference in Transgenic Plants 90

5.4.1 Applications of RNAi for Crop Protection   92

5.4.2 Applications of RNAi for Crop Improvement and Metabolic Engineering   . 93

5.5 Conclusions 94

References   94

6 Breeding with Genetically Modified Plants 103
Christian Jung

6.1 Genetic Variation in Plant Breeding  . 103

6.2 Breeding Aims103

6.3 Methods for Introducing Transgenes into Elite Plant Material   . 105

6.4 Breeding Methods    107

6.4.1 Line Varieties   108

6.4.2 Open-Pollinated Varieties    109

6.4.3 Hybrid Varieties  109

6.4.4 Clone Varieties  . 111

6.5 Safety and Legal Aspects of GMO Breeding    . 112

6.5.1 Separating Transgenic and Non-Transgenic Breeding Programs 112

6.5.2 Breeding Marker-Free Cultivars . 113

6.5.3 ‘Cisgenic’ and Transgenic Plants 113

6.6 Non-Transgenic Versus Transgenic Breeding    114

6.7 Conclusions 115

References   116

7 Detection of Genetically Modified Plants in Seeds,

Food and Feed . 117
Lutz Grohmann

7.1 Introduction 117

7.2 Techniques Used to Detect a Transgenic Plant    118

7.2.1 DNA-Based Detection118

7.2.2 Protein-Based Detection    . 122

7.2.3 Method Validation and Standardisation    123

7.3 Detection Strategies   124

7.3.1 Screening    . 124

7.3.2 Identification   . 128

7.3.3 Quantification   129

7.3.4 Detection of Stacked Events   129

7.3.5 Detection of Unauthorised/Unknown GMOs  130

7.3.6 Method Databases . 131

7.3.7 Sampling Issues  . 131

7.4 Conclusions 132

References   132


Part B Selected Characters of Transgenic Plants and Their Application in Plant Production


8 Drought Stress Tolerance  139
Dorothea Bartels and Jonathan Phillips

8.1 Introduction 139

8.2 Transgenic Plant Strategies for Enhanced Drought Stress Tolerance in Crop Plants . 140

8.2.1 Osmoprotectants and Metabolite Engineering  141

8.2.2 Regulatory and Signalling Genes: Tools to Engineer Drought Stress Tolerance    147

8.3 Future Prospects: “Climate-Ready” Crops. 153

References   154

9 Herbicide Resistance    159
Micheal D.K. Owen

9.1 Introduction 159

9.1.1 Overview of Adoption160

9.1.2 Types of Herbicide Resistance  160

9.1.3 Modes of Herbicide Action in Herbicide-Resistant Crops   161

9.1.4 Implications of Genetically Modified Herbicide-Resistant Crops 162

9.2 Specific Crops with Herbicide Resistance. 164

9.2.1 Maize 164

9.2.2 Soybean165

9.2.3 Cotton 165

9.2.4 Canola. 165

9.2.5 Sugarbeets    166

9.2.6 Turf . 166

9.2.7 Alfalfa. 166

9.2.8 Rice . 166

9.2.9 Wheat 167

9.3 Implications of Genetically Modified Herbicide Resistance on Cropping Systems   167

9.3.1 Tillage. 167

9.3.2 Diversity of Weed Management Tactics    168

9.3.3 Timelines of Weed Management Tactics   . 169

9.4 Herbicide-Resistant Weeds 169

9.4.1 Weedy Near-Relatives to Genetically Modified Herbicide-Resistant Crops – Gene Flow    170

9.4.2 Implications of Herbicide Resistance – Persistence in the Agroecosystem. 171

9.5 Conclusions 172

References   173

10 Insect and Nematode Resistance    177
Tim Thurau, Wanzhi Ye, and Daguang Cai

10.1 Introduction     177

10.2 R Gene-Mediated Resistance    178

10.2.1 Plant Resistance and Resistance Gene   178

10.2.2 Plant Parasite Resistance and Resistance Genes     179

10.2.3 Significance and Limitations of Plant Resistance Genes    . 181

10.3 Engineering of Insect and Nematode Resistance  182

10.3.1 Anti-Insect/Nematode Genes . 183

10.4 Conclusions189

References  . 189

11 Metabolic Engineering   199
Lars M. Voll and Frederik Bo ̈rnke

11.1 Introduction     199

11.2 Strategies for Metabolic Engineering in Plants   200

11.3 Engineering of Primary Metabolism . 201

11.3.1 Carbohydrate Metabolism  . 201

11.3.2 Metabolic Engineering of Lapid Metabolism 206

11.4 Engineering of Secondary Metabolism for Human Health and Nutrition  212

11.4.1 Flavonoids   212

11.4.2 Vitamins   . 213

11.5 Conclusions214

References  . 214

12 Pharmaceuticals221
Andreas Schiermeyer and Stefan Schillberg

12.1 Introduction     221

12.2 Expression Systems  222

12.2.1 Transient Expression Systems 222

12.2.2 Stable Expression Systems  223

12.3 Post-Translational Modifications   226

12.4 Downstream Processing 228

12.5 PMPs in Advanced Development  . 228

12.5.1 Glucocerebrosidase     228

12.5.2 Insulin    229

12.5.3 Idiotype Vaccines230

12.5.4 Interferon   231

12.6 Conclusion. 231

References  . 232

13 Biopolymers  237
Maja Hu ̈hns and Inge Broer

13.1 Introduction     237

13.2 Transgene-Encoded Biopolymers  . 238

13.2.1 Starch and Cellulose    239

13.2.2 Polyhydroxyalkanoates   . 242

13.2.3 Protein-Based Biomaterials  243

13.3 Conclusion. 247

References  . 248

14 Engineered Male Sterility  253
Frank Kempken

14.1 Introduction     253

14.2 Natural Male Sterility Systems in Plants     254

14.2.1 Cytoplasmic Male Sterility  254

14.2.2 Nuclear Male Sterility    255

14.3 Methods of Producing Male-Sterile Plants    256

14.3.1 The Selective Destruction of Tissues Important for the Production of Functional Pollen  . 256

14.3.2 Changing the Levels of Metabolites Needed for the Production of Viable Pollen    258

14.3.3 Engineering Cytoplasmic Male-Sterile Plants. 259

14.4 Strategies for the Multiplication of Male-Sterile Lines     259

14.4.1 Herbicide Application for Selection of Male-Sterile Plants    260

14.4.2 Reversible Male Sterility   260

14.4.3 Use of Maintainer Lines   261

14.5 Commercial Use of Male Sterility  261

14.6 Conclusions and Future Perspectives 261

References  . 262


Part C Transgenic Plants in Breeding and Crop Production


15 Cotton    269
Keerti S. Rathore

15.1 Introduction     269

15.2 Importance and Potential Impact of Genetic Modification in Cotton 270

15.3 Transformation of Cotton and its Improvement via Genetic

Modification     271

15.3.1 Methods Used to Transform Cotton    271

15.3.2 Selectable Markers and Reporter Genes used for Cotton

Transformation 276

15.3.3 Genetically Engineered Traits in Cotton  . 277

15.3.4 The Role of New Technological Advances in Cotton

Improvement  280

15.4 Future Perspectives  . 280

References  . 281

16 Triticeae Cereals287
Jochen Kumlehn, Grit Zimmermann, Carolin Berger, Cornelia Marthe, and Goetz Hensel

16.1 Introduction     287

16.1.1 The Generation of Transgenic Triticeae Plants288

16.1.2 Transgene Expression Systems. 289

16.2 Tolerance to Abiotic Stress    . 290

16.2.1 Drought and Salinity    291

16.2.2 Aluminium Toxicity    . 292

16.3 Resistance to Fungal Infection   . 292

16.3.1 Regulators of Plant Defence . 293

16.3.2 Pathogenesis-Related Proteins 293

16.3.3 R Proteins   295

16.3.4 Fungal Proteins 296

16.3.5 Viral Proteins  296

16.4 Resistance to Viral Infection    296

16.5 Resistance to Insects  297

16.6 Grain Quality    . 297

16.6.1 Production of Recombinant Proteins   . 299

References  . 300

17 Fruit Crops  307
Magda-Viola Hanke and Henryk Flachowsky

17.1 Introduction     307

17.2 Temperate Fruit Crops 308

17.2.1 Top Fruit   308

17.2.2 Small Fruit   319

17.3 Tropical and Subtropical Fruit Crops 324

17.3.1 Avocado   . 324

17.3.2 Banana    324

17.3.3 Citrus Species . 325

17.3.4 Kiwifruit   . 327

17.3.5 Mango    327

17.3.6 Papaya    328

17.3.7 Persimmon   329

17.3.8 Pineapple   329

References  . 330

18 Maize    349
David D. Songstad

18.1 Introduction     349

18.2 Culture Media and Supplements   350

18.3 Genotype 351

18.4 Explant . 351

18.5 Transformation    352

18.5.1 Free DNA Delivery in Protoplasts. 352

18.5.2 Intact Tissue Electroporation 353

18.5.3 Silicon Carbide 353

18.5.4 Microprojectile Bombardment 354

18.5.5 Agrobacterium . 358

18.6 Benefits . 361

References  . 363

19 Ornamentals. 369
Thomas Debener and Traud Winkelmann

19.1 Introduction     369

19.2 Flower Colour Modifications    370

19.2.1 Red and Pink Flowers    372

19.2.2 Yellow and Orange Flowers . 372

19.2.3 Blue Flowers  373

19.2.4 White Flowers . 373

19.2.5 Pigmentation Patterns    373

19.3 Postharvest Quality  . 374

19.4 Plant Architecture   376

19.5 Disease Resistance  . 378

19.5.1 Virus Resistance 379

19.5.2 Resistance Against Fungi and Bacteria   380

19.5.3 Insect Resistance. 381

19.6 Flowering Time   . 382

19.7 Modification of Flower Structure. 382

19.8 Improvement of Abiotic Stress Tolerance    . 383

19.9 Modification of Floral Scent    384

19.10 Conclusion     385

References  . 385

20 Potato    393
Jens Lu ̈beck

20.1 Introduction     393

20.2 Pathogen Resistance  394

20.2.1 Insects    394

20.2.2 Viruses    395

20.2.3 Phytophthora infestans   . 396

20.3 Tuber Quality Traits  397

20.3.1 Blackspot Bruise. 397

20.3.2 Cold-Induced Sweetening  . 397

20.4 Nutritional Value   398

20.4.1 Amino Acids/Protein    398

20.4.2 Carotenoids  . 399

20.4.3 Fructan/Inulin . 400

20.5 Production of Biopolymers    . 401

20.5.1 Starch    . 401

20.5.2 Polyhydroxyalkanoates   . 401

20.5.3 Cyanophycin/Poly-Aspartate . 402

20.5.4 Spider Silk   403

20.6 Conclusions403

References  . 404

21 Rapeseed/Canola409
Christian Mo ̈llers

21.1 Introduction     409

21.2 Transformation Using Direct Gene Transfer Methods410

21.3 Transformation Using Agrobacterium tumefaciens 410

21.3.1 Explant Type, Additives and Genotype Dependance   410

21.3.2 Agrobacterium Strains   . 411

21.3.3 Transformation Using Protoplasts. 412

21.3.4 Transformation Using Haploids. 412

21.3.5 Transformation Avoiding Tissue Culture  413

21.3.6 Plant-Selectable Marker Genes and Marker Gene-Free Transgenic Plants. 413

21.4 Employment of Transgenic Oilseed Rape in Breeding414

21.5 Employment of Transgenic Oilseed Rape in Crop Production. 417

21.6 Conclusions419

References  . 419

22 Rice     423
Hao Chen, Yongjun Lin, and Qifa Zhang

22.1 Introduction     423

22.2 Rice Transformation Technology and Functional Genomics   424

22.3 Insecticidal Rice   . 425

22.3.1 Bt Rice    425

22.3.2 GNA Rice   426

22.4 Disease-Resistant Rice 427

22.4.1 Resistance to Bacterial Blight 427

22.4.2 Resistance to Fungal Diseases 427

22.4.3 Resistance to Viral Diseases . 428

22.5 Abiotic Stress Tolerance. 429

22.6 Quality Improvement  433

22.7 Nutrient-Use Efficiency 434

22.7.1 Nitrogen-Use Efficiency   434

22.7.2 Phosphorus-Use Efficiency  435

22.8 Yield  . 437

22.9 Herbicide-Tolerant Rice 439

22.10 Prospects. 440

References  . 441

23 Sugarcane. 453
Fredy Altpeter and Hesham Oraby

23.1 Introduction     453

23.2 Origin  453

23.3 Sugarcane Breeding, Biotechnology and Biosafety 454

23.4 In Vitro Culture   . 455

23.4.1 In Vitro Culture for Sugarcane Improvement. 455

23.4.2 Sugarcane Somatic Embryogenesis    456

23.4.3 Sugarcane Organogenesis  . 456

23.5 Genetic Engineering of Sugarcane  457

23.5.1 Methods of Transformation  457

23.5.2 Selection of the Transformed Tissues   461

23.5.3 Traits of Interest 461

23.6 Future Trends. 466

References. 467

24 Soybean. 473
Jack M. Widholm, John J. Finer, Lila O. Vodkin, Harold N. Trick, Peter LaFayette, Jiarui Li, and Wayne Parrott

24.1 Introduction     473

24.2 Methodology. 474

24.2.1 Cot Node and other Organogenic Transformation Systems 474

24.2.2 Embryogenic Culture Transformation System. 476

24.2.3 Whole-Plant Transformation Systems   477

24.2.4 Other Considerations for Transformation  477

24.2.5 Multi-Gene Insertions and Marker-Free Plants478

24.2.6 Selectable Markers     479

24.2.7 Homozygosity Determination 479

24.3 Applications of Transformation Technology. 480

24.3.1 Herbicide Resistance    480

24.3.2 Modification of Oil Composition     480

24.3.3 Nematode Resistance    482

24.3.4 Isoflavones   483

24.3.5 Insect Resistance. 483

24.3.6 Disease Resistance     484

24.3.7 Phytase    484

24.3.8 Seed Protein Composition  485

24.4 Gene Discovery and Promoters   486

24.4.1 Genomic Resources for Selection of Promoters and Genes for Modification  486

24.4.2 Promoter Evaluation    487

24.5 Future of Soybean Transformation  490

References. 491

25 Vegetables. 499
Evelyn Klocke, Thomas Nothnagel, and Gu ̈nter Schumann

25.1 Introduction     499

25.2 Economically Important Vegetable Families. 515

25.2.1 Solanaceae   515

25.2.2 Brassicaceae (Brassica oleracea L., B. rapa L., Raphanus sativus L.)    519

25.2.3 Fabaceae (Pisum sativum L., Phaseolus vulgaris L.)   521

25.2.4 Cucurbitaceae [Cucumis sativus L., C. Melo L., Cucurbita pepo L., Citrullus lanatus (THUNB.) Matsun. & Nakai., and other cucurbit species] 523

25.2.5 Asteraceae   524

25.2.6 Apiaceae (Daucus carota L.) 526

25.2.7 Chenopodiaceae (Spinacia oleracea L.)  . 527

25.2.8 Liliaceae. 527

25.3 Conclusions528

References. 529


Part D Risk Assessment and Economic Applications 


26 Regulatory Oversight and Safety Assessment of Plants with Novel Traits     553
Yann Devos, Karine Lheureux, and Joachim Schiemann

26.1 Introduction – From Foragers to Genetic Modification in a Genomic Era   553

26.2 Regulatory Oversight of GM Plants and Their Derived Food and Feed Products 555

26.2.1 Process-Based Versus Product-Based Approach. 555

26.2.2 Regulatory Framework for GMOs in the EU 556

26.3 Risk Assessment Principles    . 557

26.3.1 Interplay of Risk Assessment, Risk Management, and Risk Communication. 557

26.3.2 Risk Assessment Methodology and Terminology    558

26.3.3 Problem Formulation    559

26.3.4 Risk Assessment Principles and Concepts  562

26.3.5 Comparative Risk Assessment and Familiarity Concept  000

26.4 EFSA GMO Panel Guidance and Further Prospectives     565

26.4.1 EFSA Scientific Colloquium on Environmental Risk Assessment of GM Plants. 566

26.4.2 Self-Tasking Working Group on NTO Testing567

26.4.3 Update of Environment Sections of the EFSA Guidance on the Risk Assessment of GM Plants and Derived Food and Feed Products   567

26.5 Discussion and Conclusions    568

References. 571

27 Environmental Impact of Genetically Modified Maize Expressing Cry1 Proteins  575
Detlef Bartsch, Yann Devos, Rosie Hails, Jozsef Kiss, Paul Henning Krogh, Sylvie Mestdagh, Marco Nuti, Angela Sessitsch, Jeremy Sweet, and Achim Gathmann

27.1 Introduction     575

27.2 Potential Unintended Effects on Plant Fitness Due to the Genetic Modification  576

27.3 Potential for Gene Transfer    . 571

27.3.1 Plant to Bacterium Gene Transfer. 571

27.3.2 Plant to Plant Gene Transfer . 571

27.4 Potential Interactions of the GM Plant with Target Organisms  578

27.5 Potential Interactions of the GM Plant with Non-Target Organisms 581

27.5.1 Persistence of Cry1 Proteins in Soil: Exposure Assessment  . 581

27.5.2 Biological Effects in Soil: General Impact Assessment  583

27.5.3 Assessment of Impact on Earthworms   584

27.5.4 Assessment of Impact on Isopods     585

27.5.5 Assessment of Impact on Nematodes. 586

27.5.6 Assessment of Impact on Collembolans  . 587

27.5.7 Cry1 Genes in Water: Exposure Assessment in Aquatic Environments   588

27.5.8 Presence of Cry1 Proteins in Water: Impact Assessment in Aquatic Environments   589

27.5.9 Exposure and Impacts on Non-Target Lepidoptera. 590

27.5.10 Global Analysis of Impacts on Non-Target Entomofauna. 593

27.5.11 Trophic Chain Effects on Predators. 594

27.5.12 Trophic Chain Effects on Parasitoids   596

27.5.13 Assessment of Impacts on Pollinating Insects 597

27.6 Potential Impacts on Human and Animal Health  599

27.7 Potential Interaction with the Abiotic Environment and Biogeochemical Cycles. 599

27.8 Impacts of the Specific Cultivation, Management, and Harvesting Techniques. 601

27.9 Monitoring. 602

27.10 Conclusions. 603

References. 604

28 Benefits of Transgenic Plants: a Socioeconomic Perspective    615
Matin Qaim and Arjunan Subramanian

28.1 Introduction     615

28.2 Impacts of Insect-Resistant Crops  616

28.2.1 Agronomic Effects     616

28.2.2 Economic Effects. 618

28.2.3 Poverty and Distribution Effects619

28.2.4 Environmental and Health Effects. 619

28.3 Impacts of Herbicide-Tolerant Crops 622

28.3.1 Agronomic and Economic Effects. 622

28.3.2 Environmental Effects. 624

28.4 Potential Impacts of Future Transgenic Crops   624

28.4.1 Crops with Improved Agronomic Traits. 624

28.4.2 Crops with Improved Nutritional Traits. 625

28.5 Conclusions626

References. 627

29 Risk Assessment and Economic Applications – the Cartagena Protocol on Biosafety: GMO Approval and Import on a World-Wide Scale   631
Joachim Bendiek and Hans-Jo ̈rg Buhk

29.1 Introduction     631

29.2 The Cartagena Protocol on Biological Safety   632
29.2.1 The Convention on Biological Diversity as the Basis for the Cartagena Protocol on Biological Safety. 632

29.2.2 The Cartagena Protocol on Biosafety and the Biosafety Clearing House. 633

29.3 GMO Approval    637

29.3.1 European Union 637

29.3.2 United States of America. 644

29.4 GMO Approval, GMO Labelling and GMO Trade . 645

29.5 Conclusions646

References. 646

30 Public Perceptions of Modern Biotechnology and the Necessity to Improve Communication 649
Roger J. Busch

30.1 Introduction     649

30.2 Societal Debate and Its Problems. 650

30.2.1 Statistic Data on Public Attitudes Towards Biotechnology. 651

30.2.2 Frames of Reference by Promotors and Critics653

30.3 Insufficient Approaches 656

30.4 Improvements in Communication with the Public. 657

30.4.1 Respect to Sustainability and Ethics    659

30.4.2 Involvement of Consumers  659

References. 661

Index 663

GET THIS BOOK
Categories:
Similar Books

0 comments: