The Art Of Electronics

The Art Of Electronics
 
Author:
Paul Horowitz & Winfield Hill
Publisher: Cambridge University Press
ISBN No: 0-521 -37095-7
Release at: 1989
Pages: 1041
Edition:
Second Edition
File Size: 28 MB
File Type: pdf
Language: English



Content of The Art Of Electronics



CHAPTER 1

FOUNDATIONS 1
lntroduction 1
Voltage, current, and resistance 2
1 .O1 Voltage and current 2
1.02 Relationship between voltage and
current: resistors 4
1.03 Voltage dividers 8
1.04 Voltage and current sources 9
1.05 Thevenin's equivalent circuit 1 1
1.06 Small-signal resistance 13
Signals 15
1.07 Sinusoidal signals 15
1.08 Signal amplitudes and
decibels 16
1.09 Other signals 17
1.10 Logic levels 19
1.1 1 Signal sources 19
Capacitors and ac circuits 20
1.12 Capacitors 20
1.13 RC circuits: V and I versus
time 23
1.14 Differentiators 25
1.15 Integrators 26
Inductors and transformers 28
1.16 Inductors 28
1.17 Transformers 28
Impedance and reactance 29
1.18 Frequency analysis of reactive
circuits 30
1.19 Refilters 35
1.20 Phasor diagrams 39
1.2 1 "Poles" and decibels per
octave 40
1.22 Resonant circuits and active
filters 41
1.23 Other capacitor applications 42
1.24 ThCvenin's theorem
generalized 44
Diodes and diode circuits 44
1.25 Diodes 44
1.26 Rectification 44
1.27 Power-supply filtering 45
1.28 Rectifier configurations for power
supplies 46
1.29 Regulators 48
1.30 Circuit applications of diodes 48
1.3 1 Inductive loads and diode
protection 52
Other passive components 53
1.32 Electromechanical devices 53
1.33 Indicators 57
1.34 Variable components 57
Additional exercises 58

CHAPTER 2

TRANSISTORS 61
Introduction 61
2.01 First transistor model: current
amplifier 62
Some basic transistor circuits 63
2.02 Transistor switch 63
2.03 Emitter follower 65
2.04 Emitter followers as voltage
regulators 68
2.05 Emitter follower biasing 69
2.06 Transistor current source 72
2.07 Common-emitter amplifier 76
2.08 Unity-gain phase splitter 77
2.09 Transconductance 78
Ebers-Moll model applied to basic
transistor circuits 79
10 Improved transistor model:
transconductance amplifier 79
1 1 The emitter follower revisited 8 1
2.12 The common-emitter amplifier
revisited 82
2.13 Biasing the common-emitter
amplifier 84
2.14 Current mirrors 88
Some amplifier building blocks 91
2.1 5 Push-pull output stages 9 1
2.16 Darlington connection 94
2.17 Bootstrapping 96
2.18 Differential amplifiers 98
2.19 Capacitance and Miller effect 102
2.20 Field-effect transistors 104
Some typical transistor circuits 104
2.2 1 Regulated power supply 104
2.22 Temperature controller 105
2.23 Simple logic with transistors and
diodes 107
Self-explanatory circuits 107
2.24 Good circuits 107
2.25 Bad circuits 107
Additional exercises 107

CHAPTER 3

FIELD-EFFECT TRANSISTORS 1 13
lntroduction 1 13
3.01 FET characteristics 1 14
3.02 FET types 1 17
3.03 Universal FET characteristics 1 19
3.04 FET drain characteristics 12 1
3.05 Manufacturing spread of FET
characteristics 122
Basic FET circuits 124
3.06 JFET current sources 125
3.07 FET amplifiers 129
3.08 Source followers 133
3.09 FET gate current 135
3.10 FETs as variable resistors 1 38
FET switches 140
3.1 1 FET analog switches 14 1
3.12 Limitations of FET switches 144
3.1 3 Some FET analog switch
examples 15 1
3.14 MOSFET logic and power
switches 153
3.15 MOSFET handling
precautions 169
Self-explanatory circuits 171
3.16 Circuit ideas 17 1
3.1 7 Bad circuits 1 7 1 vskip6pt

CHAPTER 4

FEEDBACK AND OPERATIONAL
AMPLIFIERS 175
lntroduction 175
4.01 Introduction to feedback 175
4.02 Operational amplifiers 176
4.03 The golden rules 177
Basic op-amp circuits 177
4.04 Inverting amplifier 177
4.05 Noninverting amplifier 178
4.06 Follower 179
4.07 Current sources 180
4.08 Basic cautions for op-amp
circuits 182
An op-amp smorgasbord 183
4.09 Linear circuits 183
4.10 Nonlinear circuits 187
A detailed look at op-amp behavior 188
4.1 1 Departure from ideal op-amp
performance 189
4.12 Effects of op-amp limitations on
circuit behavior 1 93
4.13 Low-power and programmable
op-amps 210
A detailed look at selected op-amp
circuits 213
4.14 Logarithmic amplifier 2 13
4.15 Active peak detector 2 17
4.16 Sample-and-hold 220
4.17 Active clamp 22 1
4.18 Absolute-value circuit 22 1
4.19 Integrators 222
4.20 Differentiators 224
Op-amp operation with a single power
supply 224
4.2 1 Biasing single-supply ac
amplifiers 225
4.22 Single-supply op-amps 225
Comparators and Schmitt trigger 229
4.23 Comparators 229
4.24 Schmitt trigger 231
Feedback with finite-gain amplifiers 232
4.25 Gain equation 232
4.26 Effects of feedback on amplifier
circuits 233
4.27 Two examples of transistor
amplifiers with feedback 236
Some typical op-amp circuits 238
4.28 General-purpose lab amplifier 238
4.29 Voltage-controlled oscillator 240
4.30 JFET linear switch with RoN
compensation 241
4.3 1 TTL zero-crossing detector 242
4.32 Load-current-sensing circuit 242
Feedback amplifier frequency
compensation 242
4.33 Gain and phase shift versus
frequency 243
4.34 Amplifier compensation
methods 245
4.35 Frequency response of the feedback
network 247
4.37 Bad circuits 250
Additional exercises 25 1

CHAPTER 5

ACTIVE FILTERS AND
OSCILLATORS 263
Active filters 263
5.01 Frequency response with RC
filters 263
5.02 Ideal performance with LC
filters 265
5.03 Enter active filters: an
overview 266
5.04 Key filter performance
criteria 267
5.05 Filter types 268
Active filter circuits 272
5.06 VCVS circuits 273
5.07 VCVS filter design using our
simplified table 274
5.08 State-variable filters 276
5.09 Twin-T notch filters 279
5.10 Gyrator filter realizations 28 1
5.1 1 Switched-capacitor filters 28 1
Oscillators 284
5.12 Introduction to oscillators 284
5.13 Relaxation oscillators 284
5.14 The classic timer chip:
the 555 286
5.1 5 Voltage-controlled oscillators 29 1
5.16 Quadrature oscillators 291
5.17 Wien bridge and LC
oscillators 296
5.18 LC oscillators 297
5.19 Quartz-crystal oscillators 300
Self-explanatory circuits 303
5.20 Circuit ideas 303
Additional exercises 303

CHAPTER 6

VOLTAGE REGULATORS AND POWER
CIRCUITS 307
Self-explanatory circuits 250 Basic regulator circuits with the
4.36 Circuit ideas 250 classic 723 307
6.01 The 723 regulator 307 

CHAPTER 7

6.02 Positive regulator 309 PRECISION CIRCUITS AND LOW-NOISE
6.03 High-current regulator 3 1 1 TECHNIQUES 391
Heat and power design 312
6.04 Power transistors and heat
sinking 312
6.05 Foldback current limiting 3 16
6.06 Overvoltage crowbars 3 17
6.07 Further considerations in high-
current power-supply design 320
6.08 Programmable supplies 32 1
6.09 Power-supply circuit example 323
6.10 Other regulator ICs 325
Precision op-amp design techniques 391
Precision versus dynamic
range 391
Error budget 392
Example circuit: precision
with automatic null offset
A precision-design error
budget 394
Component errors 39 5
amplifier 392
The unregulated supply 325 7.06 Amplifier input errors 396
6.1 1 ac line components 326 7.07 Amplifier output errors 403
6.12 Transformer 328 7.08 Auto-zeroing (chopper-stabilized)
6.13 dc components 329 amplifiers 4 15
Voltage references 331
6.14 Zener diodes 332
6.15 Bandgap (VBE) reference 335
Three-terminal and four-terminal
regulators 341
6.16 Three-terminal regulators 34 1
6.17 Three-terminal adjustable
regulators 344
6.18 Additional comments about
3-terminal regulators 345
6.19 Switching regulators and dc-dc
converters 3 5 5
Special-purpose power-supply
circuits 368
6.20 High-voltage regulators 368
6.2 1 Low-noise, low-drift supplies 374
6.22 Micropower regulators 376
6.23 Flying-capacitor (charge pump)
voltage converters 377
6.24 Constant-current supplies 379
6.25 Commercial power-supply
modules 382
Self-explanatory circuits 384
6.26 Circuit ideas 384
6.27 Bad circuits 384
Additional exercises 384
Differential and instrumentation
amplifiers 421
7.09 Differencing amplifier 42 1
7.10 Standard three-op-amp
instrumentation amplifier 425
Amplifier noise 428
7.1 1 Origins and kinds of noise 430
7.12 Signal-to-noise ratio and noise
figure 433
7.13 Transistor amplifier voltage and
current noise 436
7.14 Low-noise design with
transistors 438
7.15 FET noise 443
7.16 Selecting low-noise transistors 445
7.17 Noise in differential and feedback
amplifiers 445
Noise measurements and noise
sources 449
7.18 Measurement without a noise
source 449
7.1 9 Measurement with noise
source 450
7.20 Noise and signal sources 452
7.2 1 Bandwidth limiting and rms voltage
measurement 45 3
7.22 Noise potpourri 454
Interference: shielding and
grounding 455
7.23 Interference 455
7.24 Signal grounds 457
7.25 Grounding between
instruments 457
Self-explanatory circuits 466
7.26 Circuit ideas 466
Additional exercises 466

CHAPTER 8

DIGITAL ELECTRONICS 471
Basic logic concepts 471
8.01 Digital versus analog 471
8.02 Logic states 472
8.03 Number codes 473
8.04 Gates and truth tables 478
8.05 Discrete circuits for gates 480
8.06 Gate circuit example 481
8.07 Assertion-level logic notation 482
TTL and CMOS 484
8.08 Catalog of common gates 484
8.09 IC gate circuits 485
8.10 TTL and CMOS
characteristics 486
8.1 1 Three-state and open-collector
devices 487
Combinational logic 490
8.12 Logic identities 49 1
8.13 Minimization and Karnaugh
maps 492
8.14 Combinational functions available
as ICs 493
8.15 Implementing arbitrary truth
tables 500
Sequential logic 504
8.16 Devices with memory: flip-
flops 504
8.17 Clocked flip-flops 507
8.18 Combining memory and gates:
sequential logic 5 12
8.19 Synchronizer 5 15
Monostable multivibrators 51 7
8.20 One-shot characteristics 5 17
8.2 1 Monostable circuit example 5 19
8.22 Cautionary notes about
monostables 5 19
8.23 Timing with counters 522
Sequential functions available as
ICs 523
8.24 Latches and registers 523
8.25 Counters 524
8.26 Shift registers 525
8.27 Sequential PALS 527
8.28 Miscellaneous sequential
functions 541
Some typical digital circuits 544
8.29 Modulo-n counter: a timing
example 544
8.30 Multiplexed LED digital
display 546
8.3 1 Sidereal telescope drive 548
8.32 An n-pulse generator 548
Logic pathology 551
8.33 dc problems 551
8.34 Switching problems 552
8.35 Congenital weaknesses of TTL and
CMOS 554
Self-explanatory circuits 556
8.36 Circuit ideas 556
8.37 Bad circuits 556
Additional exercises 5 56

CHAPTER 9

DIGITAL MEETS ANALOG 565
CMOS and TTL logic interfacing 565
9.01 Logic family chronology 565
9.02 Input and output
characteristics 570
9.03 Interfacing between logic
families 572
9.04 Driving CMOS amd TTL
inputs 575
9.05 Driving digital logic from
comparators and op-amps 577
9.06 Some comments about logic
inputs 579
9.07 Comparators 580
9.08 Driving external digital loads from
CMOS and TTL 582
9.09 NMOS LSI interfacing 588
9.10 Opto-electronics 590
Digital signals and long wires 599
9.1 1 On-board interconnections 599
9.12 Intercard connections 601
9.13 Data buses 602
9.14 Driving cables 603
Analogldigital conversion 61 2
9.15 Introduction to A/D
conversion 6 12
9.16 Digital-to-analog converters
(DACs) 614
9.17 Time-domain (averaging)
DACs 618
9.18 Multiplying DACs 6 19
9.19 Choosing a DAC 6 19
9.20 Analog-to-digital converters 62 1
9.2 1 Charge-balancing techniques 626
9.22 Some unusual AID and DIA
converters 630
9.23 Choosing an ADC 631
Some AID conversion examples 636
9.24 16-Channel AID data-acquisition
system 636
9.25 3+-~i~it voltmeter 638
9.26 Coulomb meter 640
Phase-locked loops 641
9.27 Introduction to phase-locked
loops 641
9.28 PLL design 646
9.29 Design example: frequency
multiplier 647
9.30 PLL capture and lock 65 1
9.31 Some PLL applications 652
Pseudo-random bit sequences and noise
generation 655
9.32 Digital noise generation 655
9.33 Feedback shift register
sequences 655
9.34 Analog noise generation from
maximal-length sequences 658
9.35 Power spectrum of shift register
sequences 6 5 8
9.36 Low-pass filtering 660
9.37 Wrap-up 661
9.38 Digital filters 664
Self-explanatory circuits 667
9.39 Circuit ideas 667
9.40 Bad circuits 668
Additional exercises 668

CHAPTER 10

MICROCOMPUTERS 673
Minicomputers, microcomputers, and
microprocessors 673
10.01 Computer architecture 674
A computer instruction set 678
10.02 Assembly language and machine
language 678
10.03 Simplified 808618 instruction
set 679
10.04 A programming example 683
Bus signals and interfacing 684
10.05 Fundamental bus signals: data,
address, strobe 684
10.06 Programmed 110: data out 685
10.07 Programmed I/O: data in 689
10.08 Programmed 110: status
registers 690
10.09 Interrupts 693
10.10 Interrupt handling 695
10.1 1 Interrupts in general 697
10.1 2 Direct memory access 70 1
10.13 Summary of the IBM PC's bus
signals 704
10.14 Synchronous versus asynchronous
bus communication 707
10.15 Other microcomputer buses 708
10.16 Connecting peripherals to the
computer 71 1
Software system concepts 71 4
10.1 7 Programming 7 14
10.18 Operating systems, files, and use of
memory 716
Data communications concepts 71 9
10.19 Serial communication and
ASCII 720
10.20 Parallel communication:
Centronics, SCSI, IPI,
GPIB (488) 730
10.21 Local area networks 734
10.22 Interface example: hardware data
packing 736
10.23 Number formats 738

CHAPTER 11

MICROPROCESSORS 743
A detailed look at the 68008 744
1 1 .O1 Registers, memory, and I/O 744
1 1.02 Instruction set and
addressing 745
1 1.03 Machine-language
representation 750
1 1.04 Bus signals 753
A complete design example: analog
signal averager 760
1 1.05 Circuit design 760
1 1.06 Programming: defining the
task 774
11.07 Programming: details 777
1 1.08 Performance 796
1 1.09 Some afterthoughts 797
Microprocessor support chips 799
1 1.10 Medium-scale integration 800
1 1.1 1 Peripheral LSI chips 802
11.12 Memory 812
1 1.13 Other microprocessors 820

CHAPTER 12

ELECTRONIC CONSTRUCTION
TECHNIQUES 827
Prototyping methods 827
12.01 Breadboards 827
12.02 PC prototyping boards 828
12.03 Wire-Wrap panels 828
Printed circuits 830
12.04 PC board fabrication 830
12.05 PCboarddesign 835
12.06 Stuffing PC boards 838
12.07 Some further thoughts on PC
boards 840
12.08 Advanced techniques 84 1
Instrument construction 852
12.09 Housing circuit boards in an
instrument 852
12.10 Cabinets 854
12.1 1 Construction hints 855
12.12 Cooling 855
12.13 Some electrical hints 858
12.14 Where to get components 860

CHAPTER 13

HIGH-FREQUENCY AND HIGH-SPEED
TECHNIQUES 863
High-frequency amplifiers 863
13.01 Transistor amplifiers at high
frequencies: first look 863
13.02 High-frequency amplifiers: the ac
model 864
13.03 A high-frequency calculation
example 866
13.04 High-frequency amplifier
configurations 868
13.05 A wideband design example 869
13.06 Some refinements to the ac
model 872
13.07 The shunt-series pair 872
13.08 Modular amplifiers 873
systems, Radiofrequency circuit elements 879
logic analyzers, and evaluation
boards 821 13.09 Transmission lines 879
13.10 Stubs, baluns, and
transformers 88 1
13.1 1 Tuned amplifiers 882
13.12 Radiofrequency circuit
elements 884
13.13 Measuring amplitude or
power 888
Radiofrequency communications:
AM 892
13.14 Some communications
concepts 892
13.15 Amplitude modulation 894
13.16 Superheterodyne receiver 895
Advanced modulation methods 897
13.17 Single sideband 897
13.18 Frequency modulation 898
13.19 Frequency-shift keying 900
13.20 Pulse-modulation schemes 900
Radiofrequency circuit tricks 902
13.2 1 Special construction
techniques 902
13.22 Exotic RF amplifiers and
devices 903
High-speed switching 904
13.23 Transistor model and
equations 905
13.24 Analog modeling tools 908
Some switching-speed examples 909
1 3.25 High-voltage driver 909
13.26 Open-collector bus driver 9 10
1 3.27 Example: photomultiplier
preamp 91 1
Self-explanatory circuits 91 3
13.28 Circuit ideas 91 3
Additional exercises 9 13

CHAPTER 14

LOW-POWER DESIGN 91 7
Introduction 917
14.01 Low-power applications 9 1 8
Power sources 920
14.02 Battery types 920
14.03 Wall-plug-in units 93 1
14.04 Solar cells 932
14.05 Signal currents 933
Power switching and micropower
regulators 938
14.06 Power switching 938
14.07 Micropower regulators 94 1
14.08 Ground reference 944
14.09 Micropower voltage references and
temperature sensors 948
Linear micropower design
techniques 948
14.10 Problems of micropower linear
design 950
14.1 1 Discrete linear design
example 950
14.12 Micropower operational
amplifiers 95 1
14.13 Micropower comparators 965
14.14 Micropower timers and
oscillators 965
Micropower digital design 969
14.1 5 CMOS families 969
14.16 Keeping CMOS low power 970
14.17 Micropower microprocessors and
peripherals 974
14.18 Microprocessor design example:
degree-day logger 978
Self-explanatory circuits 985
14.19 Circuit ideas 985

CHAPTER 15

MEASUREMENTS AND SIGNAL
PROCESSING 987
Overview 987
Measurement transducers 988
1 5.0 1 Temperature 988
15.02 Light level 996
15.03 Strain and displacement 100 1
1 5.04 Acceleration, pressure, force,
velocity 1004
15.05 Magnetic field 1007
15.06 Vacuum gauges 1007
1 5.07 Particle detectors 1008
15.08 Biological and chemical voltage
probes 1012
Precision standards and precision
measurements 101 6
15.09 Frequency standards 10 16
15.10 Frequency, period, and time-
interval measurements 10 19
15.1 1 Voltage and resistance standards
and measurements 1025
Bandwidth-narrowing techniques 1026
1 5.12 The problem of signal-to-noise
ratio 1026
15.13 Signal averaging and multichannel
averaging 1026
1 5.14 Making a signal periodic 1030
15.15 Lock-in detection 103 1
15.16 Pulse-height analysis 1034
15.17 Time-to-amplitude converters
1035
Spectrum analysis and Fourier
transforms 1035
1 5.18 Spectrum analyzers 1035
1 5.19 Off-line spectrum analysis 1038
Self-explanatory circuits 1038
15.20 Circuit ideas 1038
APPENDIXES 1043
Appendix A
The oscilloscope 1045
Appendix B
Math review 1050
Appendix C
The 5% resistor color code 1053
Appendix D
1% Precision resistors 1054
Appendix E
How to draw schematic diagrams 1056
Appendix F
Load lines 1059
Appendix G
Transistor saturation 1062
Appendix H
LC Butterworth filters 1064
Appendix I
Electronics magazines and journals
1068
Appendix J
IC prefixes 1069
Appendix K
Data sheets 1072
2N4400-1 NPN transistor 1073
LF4 1 1 - 12 JFET operational
amplifier 1078
LM3 17 3-terminal adjustable
regulator 1086
Bibliography 1095
Index 1101

GET THIS BOOK
Categories:
Similar Books

0 comments: