Karp’s Cell and Molecular Biology (PDF)

Karp’s Cell and Molecular Biology
 
Author:
Janet Iwasa & Wallace Marshall
Release at: 2016
Pages: 829
Edition:
8th Edition
File Size: 129 MB
File Type: pdf
Language: English


Description of Karp’s Cell and Molecular Biology 8th Edition


Karp’s Cell and Molecular Biology written by Janet Iwasa & Wallace Marshall for cell and molecular biology study available in (PDF) free download. During this time, he has maintained a consistent focus on combining rigor with accessibility, so that even students without prior training in cell biology, molecular biology, or biochemistry have been able to learn cell biology for collection of facts and discovery process. The value of this approach is that the lessons learned to extend far beyond the field of cell biology and provide a way for students to learn how science works, how new experiments can overturn previous dogmas, and how new techniques can lead to a groundbreaking discovery. This book makes cell biology come alive.


After seven editions, Dr. Karp is ready to move on to other adventures. We are excited to take on the challenge of continuing to teaching cell biology approach by Dr. Karp’s while continuing to put students first. Our goal for this revision was to build upon Karp’s hallmark experimental approach by bringing in our own unique perspectives and harnessing today’s technology. With our new Experimental Walkthrough feature, available in WileyPLUS Learning Space, students can see first-hand how key experimental techniques are performed in the lab. These offer a mix of video, which shows how researchers carry out experiments, and 3D animations that show a molecular-level view of how the experiments work. These Walkthroughs provide a visual explanation and context that helps make these important experimental techniques more concrete.


A solid understanding of quantitative concepts is becoming increasingly important within cell biology but is an area that many students struggle with. To address this issue, we have also added another new video feature, called Quantitative Tutorials, to visually illustrate how to solve specific analytical questions at the end of each chapter. The Quantitative Tutorial provides an accessible, student‐friendly review of basic mathematical concepts used within the context of a biological problem, and will expand the available resources for quantitative and physical concepts within this 8th edition.

Content of Karp’s Cell and Molecular Biology 8th Edition



1 Introduction to the Study of Cell and Molecular Biology  1

1.1 The Discovery of Cells  2

1.2 Basic Properties of Cells  3

1.3 Characteristics That Distinguish Prokaryotic and Eukaryotic Cells  8

1.4 Types of Prokaryotic Cells  13

1.5 Types of Eukaryotic Cells  15

1.6 THE HUMAN PERSPECTIVE: The Prospect of Cell Replacement Therapy  17

1.7 The Sizes of Cells and Their Components  21

1.8 Viruses and Viroids  23

1.9 EXPERIMENTAL PATHWAYS: The Origin of Eukaryotic Cells  26

2  The Chemical Basis of Life 31

2.1 Covalent Bonds  32

2.2 THE HUMAN PERSPECTIVE: Do Free Radicals Cause Aging?  34

2.3 Noncovalent Bonds  35

2.4 Acids, Bases, and Buffers  38

2.5 The Nature of Biological Molecules  39

2.6 Carbohydrates  42

2.7 Lipids  46

2.8 Building Blocks of Proteins  48

2.9 Primary and Secondary Structures of Proteins  53

2.10 Tertiary Structure of Proteins  55

2.11 Quaternary Structure of Proteins  58

2.12 Protein Folding  60

2.13 THE HUMAN PERSPECTIVE: Protein Misfolding Can Have Deadly Consequences  62

2.14 EXPERIMENTAL PATHWAYS: Chaperones—Helping Proteins Reach Their Proper Folded State  67

2.15 Proteomics and Interactomics  71

2.16 Protein Engineering 73

2.17 Protein Adaptation and Evolution  76

2.18 Nucleic Acids  77

2.19 The Formation of Complex Macromolecular Structures  79

3  Bioenergetics, Enzymes, and Metabolism  81

3.1 The Laws of Thermodynamics  82

3.2 Free Energy  85

3.3 Coupling Endergonic and Exergonic Reactions  88

3.4 Equilibrium versus Steady-State Metabolism  88

3.5 Enzymes as Biological Catalysts  89

3.6 Mechanisms of Enzyme Catalysis  93

3.7 Enzyme Kinetics  97

3.8 THE HUMAN PERSPECTIVE: The Growing Problem of Antibiotic Resistance  100

3.9 An Overview of Metabolism  103

3.10 Glycolysis and Fermentation  105

3.11 Reducing Power  109

3.12 Metabolic Regulation  109

3.13 Separating Catabolic and Anabolic Pathways  110

3.14 THE HUMAN PERSPECTIVE: Caloric Restriction and Longevity  111

4  The Structure and Function of the Plasma Membrane  114

4.1 Introduction to the Plasma Membrane  115

4.2 The Lipid Composition of Membranes  118

4.3 Membrane Carbohydrates  122

4.4 Membrane Proteins  123

4.5 Studying the Structure and Properties of Integral Membrane Proteins  126

4.6 Membrane Lipids and Membrane Fluidity  130

4.7 The Dynamic Nature of the Plasma Membrane  132

4.8 The Red Blood Cell: An Example of Plasma Membrane Structure  137

4.9 Solute Movement across Cell Membranes  139

4.10 Diffusion through the Lipid Bilayer  140

4.11 The Diffusion of Ions through Membranes  143

4.12 EXPERIMENTAL PATHWAYS: The Acetylcholine Receptor  147


4.13 Facilitated Diffusion 151

4.14 Active Transport  152

4.15 THE HUMAN PERSPECTIVE: Defects in Ion Channels & Transporters as a Cause of Inherited Disease  157

4.16 Membrane Potentials  159

4.17 Propagation of Action Potentials as an Impulse  161

4.18 Neurotransmission: Jumping the Synaptic Cleft  162

5  Aerobic Respiration and the Mitochondrion  168

5.1 Mitochondrial Structure and Function  169

5.2 Aerobic Metabolism in the Mitochondrion  172

5.3 THE HUMAN PERSPECTIVE: The Role of Anaerobic and Aerobic Metabolism in Exercise  177

5.4 Oxidative Phosphorylation in the Formation of ATP  178

5.5 Electron-Transport Complexes  182

5.6 Establishment of a Proton-Motive Force  186

5.7 The Structure of ATP Synthase  187

5.8 The Binding Change Mechanism of ATP Formation  189

5.9 Using the Proton Gradient  192

5.10 Peroxisomes  193

5.11 THE HUMAN PERSPECTIVE: Diseases that Result from Abnormal Mitochondrial or Peroxisomal Function  195

6  Photosynthesis and the Chloroplast  199

6.1 The Origin of Photosynthesis  200

6.2 Chloroplast Structure  201

6.3 An Overview of Photosynthetic Metabolism  202

6.4 The Absorption of Light  203

6.5 Coordinating the Action of Two Different Photosynthetic Systems  205

6.6 The Operations of Photosystem II and Photosystem I  207

6.7 An Overview of Photosynthetic Electron Transport  211

6.8 Photophosphorylation  212

6.9 Carbohydrate Synthesis in C 3  Plants  213

6.10 Carbohydrate Synthesis in C 4  and CAM Plants  218

6.11 THE HUMAN PERSPECTIVE: Global Warming and Carbon Sequestration  219

7  Interactions between Cells and their Environment  222

7.1 Overview of Extracellular Interactions  223

7.2 The Extracellular Matrix  224

7.3 Components of the Extracellular Matrix  226

7.4 Dynamic Properties of the Extracellular Matrix  231

7.5 Integrins 231

7.6 Anchoring Cells to Their Substratum  234

7.7 Interactions of Cells with Other Cells  237

7.8 THE HUMAN PERSPECTIVE: The Role of Cell Adhesion in Inflammation and Metastasis  241

7.9 Adherens Junctions and Desmosomes  244

7.10 The Role of Cell-Adhesion Receptors in Transmembrane Signaling  245

7.11 Tight Junctions: Sealing the Extracellular Space  245

7.12 Gap Junctions and Plasmodesmata: Mediating Intercellular Communication  247

7.13 EXPERIMENTAL PATHWAYS: The Role of Gap Junctions in Intercellular Communication  251

7.14 Cell Walls  254

8  Cytoplasmic Membrane Systems: Structure, Function, and Membrane Trafficking  257

8.1 An Overview of the Endomembrane System  258

8.2 A Few Approaches to the Study of Endomembranes  260

8.3 The Endoplasmic Reticulum  265

8.4 Functions of the Rough Endoplasmic Reticulum  268

8.5 Membrane Biosynthesis in the Endoplasmic Reticulum  271

8.6 Glycosylation in the Rough Endoplasmic Reticulum  273

8.7 Mechanisms That Ensure the Destruction of Misfolded Proteins  275

8.8 ER to Golgi Vesicular Transport  276

8.9 The Golgi Complex  276

8.10 Types of Vesicle Transport  280

8.11 Beyond the Golgi Complex: Sorting Proteins at the TGN  285

8.12 THE HUMAN PERSPECTIVE: Disorders Resulting from Defects in Lysosomal Function  286

8.13 Targeting Vesicles to a Particular Compartment  288

8.14 Exocytosis  290

8.15 Lysosomes  291

8.16 Plant Cell Vacuoles  292

8.17 Endocytosis  293

8.18 EXPERIMENTAL PATHWAYS: Receptor‐Mediated Endocytosis  297

8.19 The Endocytic Pathway  300

8.20 Phagocytosis  303

8.21 Posttranslational Uptake of Proteins by Peroxisomes, Mitochondria, and Chloroplasts  304

9  The Cytoskeleton and Cell Motility 309

9.1 Overview of the Major Functions of the Cytoskeleton  31

9.2 Structure and Function of Microtubules  311

9.3 Motor Proteins: Kinesins and Dyneins  315

9.4 EXPERIMENTAL PATHWAY: The Step Size of Kinesin  319

9.5 Microtubule-Organizing Centers (MTOCs)  321

9.6 Microtubule Dynamics  323

9.7 Structure and Function of Cilia and Flagella  327

9.8 THE HUMAN PERSPECTIVE: The Role of Cilia in Development and Disease  333

9.9 Intermediate Filaments  335

9.10 Actin  338

9.11 Myosin: The Molecular Motor of Actin  341

9.12 Muscle Organization and Contraction  344

9.13 Actin-Binding Proteins  351

9.14 Cellular Motility  353

9.15 EXPERIMENTAL PATHWAY: Studying Actin‐Based Motility without Cells  358

9.16 Actin-dependent Processes During Development  361

9.17 The Bacterial Cytoskeleton  362

10 The Nature of the Gene and the Genome  366

10.1 The Concept of a Gene as a Unit of Inheritance  367

10.2 The Discovery of Chromosomes  368

10.3 Chromosomes as the Carriers of Genetic Information  369

10.4 Genetic Analysis in Drosophila  370

10.5 The Structure of DNA  373

10.6 EXPERIMENTAL PATHWAYS: The Chemical Nature of the Gene  377

10.7 DNA Supercoiling  381

10.8 The Complexity of the Genome  382

10.9 THE HUMAN PERSPECTIVE: Diseases That Result from Expansion of Trinucleotide Repeats  387

10.10 The Stability of the Genome: Duplication  389

10.11 The Dynamic Nature of the Genome: “Jumping Genes”  391

10.12 Sequencing Genomes: The Footprints of Biological Evolution  394

10.13 Comparative Genomics: “If It’s Conserved, It Must Be Important”  396

10.14 The Genetic Basis of “Being Human”  397

10.15 Genetic Variation within the Human Species Population  398

10.16 THE HUMAN PERSPECTIVE: Application of Genomic Analyses to Medicine  400

11 The Central Dogma: DNA to RNA to Protein  404

11.1 The Relationship between Genes, Proteins, and RNAs  405

11.2 The Role of RNA Polymerases in Transcription  408

11.3 An Overview of Transcription in Both Prokaryotic and Eukaryotic Cells  410

11.4 Synthesis and Processing of Eukaryotic Ribosomal and Transfer RNAs  413

11.5 Synthesis and Structure of Eukaryotic Messenger RNAs  417

11.6 Split Genes: An Unexpected Finding  420

11.7 The Processing of Eukaryotic Messenger RNAs  423

11.8 Evolutionary Implications of Split Genes and RNA Splicing  429

11.9 Creating New Ribozymes in the Laboratory  429

11.10 RNA Interference  430

11.11 THE HUMAN PERSPECTIVE: Clinical Applications of RNA Interference  432

11.12 Small RNAs: miRNAs and piRNAs  433

11.13 CRISPR and other Noncoding RNAs  435

11.14 Encoding Genetic Information  436

11.15 Decoding the Codons: The Role of Transfer RNAs  439

11.16 Translating Genetic Information: Initiation  442

11.17 Translating Genetic Information: Elongation and Termination  445

11.18 mRNA Surveillance and Quality Control  448

11.19 Polyribosomes  449

11.20 EXPERIMENTAL PATHWAYS: The Role of RNA as a Catalyst  450

12  Control of Gene Expression  455

12.1 Control of Gene Expression in Bacteria  456

12.2 Structure of the Nuclear Envelope  460

12.3 Packaging the Eukaryotic Genome  465

12.4 Heterochromatin  469

12.5 The Structure of a Mitotic Chromosome  473

12.6 THE HUMAN PERSPECTIVE: Chromosomal Aberrations and Human Disorders  478

12.7 Epigenetics: There’s More to Inheritance than DNA  480

12.8 The Nucleus as an Organized Organelle  480

12.9 An Overview of Gene Regulation in Eukaryotes  483

12.10 Profiling Gene Activity  485

12.11 The Role of Transcription Factors in Regulating Gene Expression  488

12.12 The Structure of Transcription Factors  489

12.13 DNA Sites Involved in Regulating Transcription  492

12.14 An Example of Transcriptional Activation: The Glucocorticoid Receptor  494

12.15 Transcriptional Activation: The Role of Enhancers, Promoters, and 

12.16 Transcriptional Activation from Paused Polymerases  499

12.17 Transcriptional Repression  499

12.18 RNA Processing Control  503

12.19 Translational Control  505

12.20 The Role of MicroRNAs in Translational Control  508

12.21 Posttranslational Control: Determining Protein Stability  509

13  DNA Replication and Repair  512

13.1 DNA Replication  513

13.2 DNA Replication in Bacterial Cells  516

13.3 The Machinery Operating at the Replication Fork  521

13.4 The Structure and Functions of DNA Polymerases  523

13.5 Replication in Viruses  526

13.6 DNA Replication in Eukaryotic Cells  526

13.7 Chromatin Structure and Replication  530

13.8 DNA Repair  531

13.9 Between Replication and Repair  535

13.10 THE HUMAN PERSPECTIVE: Consequences of DNA Repair Deficiencies  536

14  Cell Division  539

14.1 The Cell Cycle  540

14.2 Regulation of the Cell Cycle  542

14.3 EXPERIMENTAL PATHWAYS: The Discovery and Characterization of MPF  543

14.4 Control of the Cell Cycle: The Role of Protein Kinases  546

14.5 Control of the Cell Cycle: Checkpoints, Cdk Inhibitors, and Cellular Responses  550

14.6 Overview of M Phase: Mitosis and Cytokinesis  552

14.7 Prophase  552

14.8 Prometaphase  559

14.9 Metaphase  560

14.10 Anaphase  562

14.11 Telophase and Cytokinesis 567

14.12 Overview of Meiosis  571

14.13 The Stages of Meiosis  574

14.14 THE HUMAN PERSPECTIVE: Meiotic Nondisjunction and Its Consequences  577

14.15 Genetic Recombination during Meiosis  579

15 Cell Signaling and Signal Transduction: Communication between Cells  582

15.1 The Basic Elements of Cell Signaling Systems  583

15.2 A Survey of Extracellular Messengers and Their Receptors  586

15.3 Signal Transduction by G Protein-Coupled Receptors  587

15.4 EXPERIMENTAL PATHWAYS: The Discovery and Characterization of GTP‐Binding Proteins  590

15.5 THE HUMAN PERSPECTIVE: Disorders Associated with G Protein‐Coupled Receptors  594

15.6 Second Messengers  595

15.7 The Specificity of G Protein-Coupled Responses  599

15.8 Regulation of Blood Glucose Levels  599

15.9 The Role of GPCRs in Sensory Perception  603

15.10 Protein-Tyrosine Phosphorylation as a Mechanism for Signal Transduction  603

15.11 The Ras-MAP Kinase Pathway  607

15.12 Signaling by the Insulin Receptor  611

15.13 Signaling Pathways in Plants  613

15.14 The Role of Calcium as an Intracellular Messenger  613

15.15 Convergence, Divergence, and Cross-Talk among Different Signaling Pathways  617

15.16 The Role of NO as an Intercellular Messenger  619

15.17 Apoptosis (Programmed Cell Death)  621

16  Cancer  627

16.1 Basic Properties of a Cancer Cell  628

16.2 The Causes of Cancer  631

16.3 EXPERIMENTAL PATHWAYS: The Discovery of Oncogenes  632

16.4 Cancer: A Genetic Disorder  636

16.5 An Overview of Tumor-Suppressor Genes and Oncogenes  638

16.6 Tumor-Suppressor Genes: The RB Gene  640

16.7 Tumor-Suppressor Genes: The TP53 Gene  642

16.8 Other Tumor-Suppressor Genes  645

16.9 Oncogenes  646

16.10 The Mutator Phenotype: Mutant Genes Involved in DNA Repair  649

16.11 MicroRNAs: A New Player in the Genetics of Cancer  649

16.12 The Cancer Genome  649

16.13 Gene-Expression Analysis  651

16.14 Strategies for Combating Cancer  654

16.15 Immunotherapy  654

16.16 Inhibiting the Activity of Cancer-Promoting Proteins  656

16.17 The Concept of a Cancer Stem Cell  658

16.18 Inhibiting the Formation of New Blood Vessels (Angiogenesis)  659

17  The Immune Response  661

17.1 An Overview of the Immune Response  662

17.2 The Clonal Selection Theory as It Applies to B Cells  666

17.3 THE HUMAN PERSPECTIVE: Autoimmune Diseases  668

17.4 Vaccination  671

17.5 EXPERIMENTAL PATHWAYS: The Role of the Major Histocompatibility Complex in Antigen Presentation  672

17.6 T Lymphocytes: Activation and Mechanism of Action  675

17.7 The Modular Structure of Antibodies  678

17.8 DNA Rearrangements That Produce Genes Encoding B- and T-Cell Antigen Receptors  681

17.9 Membrane-Bound Antigen Receptor Complexes  683

17.10 The Major Histocompatibility Complex  684

17.11 Distinguishing Self from Nonself  686

17.12 Lymphocytes Are Activated by Cell-Surface Signals  689

17.13 Signal Transduction Pathways in Lymphocyte Activation  689

18 Techniques in Cell and Molecular Biology  692

18.1 The Light Microscope  693

18.2 Bright-Field and Phase-Contrast Microscopy  695

18.3 Fluorescence Microscopy (and Related Fluorescence-Based Techniques)  696

18.4 Transmission Electron Microscopy  701

18.5 Specimen Preparation for Electron Microscopy  703

18.6 Scanning Electron Microscopy  707

18.7 Atomic Force Microscopy  708

18.8 The Use of Radioisotopes  709

18.9 Cell Culture  710

18.10 The Fractionation of a Cell’s Contents by Differential Centrifugation  711

18.11 Purification and Characterization of Proteins by Liquid Column Chromatography  712

18.12 Determining Protein–Protein Interactions  714

18.13 Characterization of Proteins by Polyacrylamide Gel Electrophoresis  715

18.14 Characterization of Proteins by Spectrometry  716

18.15 Characterization of Proteins by Mass Spectrometry  716

18.16 Determining the Structure of Proteins and Multisubunit Complexes  717

18.17 Fractionation of Nucleic Acids  719

18.18 Nucleic Acid Hybridization 721

18.19 Chemical Synthesis of DNA  722

18.20 Recombinant DNA Technology  723

18.21 Enzymatic Amplification of DNA by PCR  726

18.22 DNA Sequencing  728

18.23 DNA Libraries  730

18.24 DNA Transfer into Eukaryotic Cells and Mammalian Embryos  732

18.25 Gene Editing and Silencing  734

18.26 The Use of Antibodies  738

Glossary  G-1

Additional Reading  A-1


Index  I-1

GET THIS BOOK
Similar Books

0 comments: